Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Sci Adv ; 10(9): eadj3551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427741

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Cavéolas/metabolismo , Cavéolas/patologia , Neoplasias Pancreáticas/patologia , Endocitose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
2.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132097

RESUMO

Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy.


Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Células MCF-7 , 60645 , Proteômica , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
3.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001707

RESUMO

Metabolic reprogramming is one of the main hallmarks of cancer [...].

4.
Aging (Albany NY) ; 15(21): 11764-11781, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37950722

RESUMO

Aging is a continuous degenerative process caused by a progressive decline of cell and tissue functions in an organism. It is induced by the accumulation of damage that affects normal cellular processes, ultimately leading to cell death. It has been speculated for many years that mitochondria play a key role in the aging process. In the aim of characterizing the implications of mitochondria in aging, here we used Caenorhabditis elegans (C. elegans) as an organismal model treated a panel of mitochondrial inhibitors and assessed for survival. In our study, we assessed survival by evaluating worm lifespan, and we assessed aging markers by evaluating the pharyngeal muscle contraction, the accumulation of lipofuscin pigment and ATP levels. Our results show that treatment of worms with either doxycycline, azithromycin (inhibitors of the small and the large mitochondrial ribosomes, respectively), or a combination of both, significantly extended median lifespan of C. elegans, enhanced their pharyngeal pumping rate, reduced their lipofuscin content and their energy consumption (ATP levels), as compared to control untreated worms, suggesting an aging-abrogating effect for these drugs. Similarly, DPI, an inhibitor of mitochondrial complex I and II, was capable of prolonging the median lifespan of treated worms. On the other hand, subjecting worms to vitamin C, a pro-oxidant, failed to extend C. elegans lifespan and upregulated its energy consumption, revealing an increase in ATP level. Therefore, our longevity study reveals that mitochondrial inhibitors (i.e., mitochondria-targeting antibiotics) could abrogate aging and extend lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Antibacterianos/farmacologia , Lipofuscina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
5.
FEBS J ; 290(6): 1481-1501, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36237175

RESUMO

Breast cancer remains the greatest cause of cancer-related death in women worldwide. Its aggressiveness and progression derive from intricate processes that occur simultaneously both within the tumour itself and in the neighbouring cells that make up its microenvironment. The aim of the present work was firstly to study how elevated cholesterol levels increase tumour aggressiveness. Herein, we demonstrate that cholesterol, by activating ERRα pathway, promotes epithelium-mesenchymal transition (EMT) in breast cancer cells (MCF-7 and MDA-MB-231) as well as the release of pro-inflammatory factors able to orchestrate the tumour microenvironment. A further objective of this work was to study the close symbiosis between tumour cells and the microenvironment. Our results allow us to highlight, for the first time, that breast cancer cells exposed to high cholesterol levels promote (a) greater macrophages infiltration with induction of an M2 phenotype, (b) angiogenesis and endothelial branching, as well as (c) a cancer-associated fibroblasts (CAFs) phenotype. The effects observed could be due to direct activation of the ERRα pathway by high cholesterol levels, since the simultaneous inhibition of this pathway subverts such effects. Overall, these findings enable us to identify the cholesterol-ERRα synergy as an interesting target for breast cancer treatment.


Assuntos
Neoplasias da Mama , Hipercolesterolemia , Microambiente Tumoral , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Colesterol/efeitos adversos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
6.
Aging (Albany NY) ; 14(23): 9466-9483, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455875

RESUMO

Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Carvedilol/farmacologia , Quercetina/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Glicólise , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Neoplasias/metabolismo
7.
Aging (Albany NY) ; 14(24): 9877-9889, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36566021

RESUMO

Cancer stem cells (CSCs) are responsible for cancer recurrence, treatment failure and metastatic dissemination. As such, the elimination of CSCs represents one of the most important approaches for the future of cancer treatment. Among other properties, CSCs show the activation of particular cell signalling pathways and the over-expression of certain transcription factors, such as SOX2. Herein, we describe a new model system to isolate stem-like cancer cells, based on the functional transcriptional activity of SOX2. Briefly, we employed a SOX2-enhancer-GFP-reporter system to isolate cancer cells with high SOX2 transcriptional activity by FACS sorting. The over-expression of SOX2 in this sub-population was validated by Western blot analysis and flow cytometry. SOX2-high cancer cells showed CSCs features, such as greater mammosphere forming ability, validating that this sub-population was enriched in CSCs. To further explore the model, we analysed other stemness characteristics in MCF7 and MDA-MB-231 breast cancer cell lines, corroborating that SOX2-high cells were more metabolically active, proliferative, migratory, invasive, and drug-resistant. SOX2-high MDA-MB-231 cells also showed a loss of E-cadherin expression, and increased Vimentin expression, consistent with an epithelial-mesenchymal transition (EMT). Therefore, endogenous SOX2 transcriptional activity and protein levels are mechanistically linked to aggressive phenotypic behaviours and energy production in CSCs.


Assuntos
Transição Epitelial-Mesenquimal , Recidiva Local de Neoplasia , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Fenótipo , Trifosfato de Adenosina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
9.
Front Oncol ; 11: 740720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722292

RESUMO

Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the "metabolically fittest" cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the "energetically fittest" cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.

10.
BMC Mol Cell Biol ; 22(1): 41, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380438

RESUMO

BACKGROUND: The human SH3 domain Binding Glutamic acid Rich Like 3 (SH3BGRL3) gene is highly conserved in phylogeny and widely expressed in human tissues. However, its function is largely undetermined. The protein was found to be overexpressed in several tumors, and recent work suggested a possible relationship with EGFR family members. We aimed at further highlighting on these issues and investigated SH3BGRL3 molecular interactions and its role in cellular migration ability. RESULTS: We first engineered the ErbB2-overexpressing SKBR3 cells to express exogenous SH3BGRL3, as well as wild type Myo1c or different deletion mutants. Confocal microscopy analysis indicated that SH3BGRL3 co-localized with Myo1c and ErbB2 at plasma membranes. However, co-immunoprecipitation assays and mass spectrometry demonstrated that SH3BGRL3 did not directly bind ErbB2, but specifically recognized Myo1c, on its IQ-bearing neck region. Importantly, the interaction with Myo1c was Ca2+-dependent. A role for SH3BGRL3 in cell migration was also assessed, as RNA interference of SH3BGRL3 in MDA-MB-231 cells, used as a classical migration model, remarkably impaired the migration ability of these cells. On the other side, its over-expression increased cell motility. CONCLUSION: The results of this study provide insights for the formulation of novel hypotheses on the putative role of SH3BGRL3 protein in the regulation of myosin-cytoskeleton dialog and in cell migration. It could be envisaged the SH3BGRL3-Myo1c interaction as a regulation mechanism for cytoskeleton dynamics. It is well known that, at low Ca2+ concentrations, the IQ domains of Myo1c are bound by calmodulin. Here we found that binding of Myo1c to SH3BGRL3 requires instead the presence of Ca2+. Thus, it could be hypothesized that Myo1c conformation may be modulated by Ca2+-driven mechanisms that involve alternative binding by calmodulin or SH3BGRL3, for the regulation of cytoskeletal activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Miosina Tipo I/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Calmodulina/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Miosina Tipo I/genética , Ligação Proteica/genética
11.
Front Oncol ; 11: 678343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395247

RESUMO

MitoTracker Deep Red (MTDR) is a relatively non-toxic, carbocyanine-based, far-red, fluorescent probe that is routinely used to chemically mark and visualize mitochondria in living cells. Previously, we used MTDR at low nano-molar concentrations to stain and metabolically fractionate breast cancer cells into Mito-high and Mito-low cell sub-populations, by flow-cytometry. Functionally, the Mito-high cell population was specifically enriched in cancer stem cell (CSC) activity, i) showing increased levels of ESA cell surface expression and ALDH activity, ii) elevated 3D anchorage-independent growth, iii) larger overall cell size (>12-µm) and iv) Paclitaxel-resistance. The Mito-high cell population also showed enhanced tumor-initiating activity, in an in vivo preclinical animal model. Here, we explored the hypothesis that higher nano-molar concentrations of MTDR could also be used to therapeutically target and eradicate CSCs. For this purpose, we employed an ER(+) cell line (MCF7) and two triple negative cell lines (MDA-MB-231 and MDA-MB-468), as model systems. Remarkably, MTDR inhibited 3D mammosphere formation in MCF7 and MDA-MB-468 cells, with an IC-50 between 50 to 100 nM; similar results were obtained in MDA-MB-231 cells. In addition, we now show that MTDR exhibited near complete inhibition of mitochondrial oxygen consumption rates (OCR) and ATP production, in all three breast cancer cell lines tested, at a level of 500 nM. However, basal glycolytic rates in MCF7 and MDA-MB-468 cells remained unaffected at levels of MTDR of up to 1 µM. We conclude that MTDR can be used to specifically target and eradicate CSCs, by selectively interfering with mitochondrial metabolism, by employing nano-molar concentrations of this chemical entity. In further support of this notion, MTDR significantly inhibited tumor growth and prevented metastasis in vivo, in a xenograft model employing MDA-MB-231 cells, with little or no toxicity observed. In contrast, Abemaciclib, an FDA-approved CDK4/6 inhibitor, failed to inhibit metastasis. Therefore, in the future, MTDR could be modified and optimized via medicinal chemistry, to further increase its potency and efficacy, for its ultimate clinical use in the metabolic targeting of CSCs for their eradication.

12.
Cell Death Differ ; 28(9): 2797-2817, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33986463

RESUMO

Here, we provide evidence that high ATP production by the mitochondrial ATP-synthase is a new therapeutic target for anticancer therapy, especially for preventing tumor progression. More specifically, we isolated a subpopulation of ATP-high cancer cells which are phenotypically aggressive and demonstrate increases in proliferation, stemness, anchorage-independence, cell migration, invasion and multi-drug resistance, as well as high antioxidant capacity. Clinically, these findings have important implications for understanding treatment failure and cancer cell dormancy. Using bioinformatic analysis of patient samples, we defined a mitochondrial-related gene signature for metastasis, which features the gamma-subunit of the mitochondrial ATP-synthase (ATP5F1C). The relationship between ATP5F1C protein expression and metastasis was indeed confirmed by immunohistochemistry. Next, we used MDA-MB-231 cells as a model system to functionally validate these findings. Importantly, ATP-high MDA-MB-231 cells showed a nearly fivefold increase in metastatic capacity in vivo. Consistent with these observations, ATP-high cells overexpressed (i) components of mitochondrial complexes I-V, including ATP5F1C, and (ii) markers associated with circulating tumor cells (CTCs) and metastasis, such as EpCAM and VCAM1. Knockdown of ATP5F1C expression significantly reduced ATP-production, anchorage-independent growth, and cell migration, as predicted. Similarly, therapeutic administration of the FDA-approved drug, Bedaquiline, downregulated ATP5F1C expression in vitro and prevented spontaneous metastasis in vivo. In contrast, Bedaquiline had no effect on the growth of non-tumorigenic mammary epithelial cells (MCF10A) or primary tumors in vivo. Taken together, our results suggest that mitochondrial ATP depletion is a new therapeutic strategy for metastasis prophylaxis, to avoid treatment failure. In summary, we conclude that mitochondrial ATP5F1C is a promising new biomarker and molecular target for future drug development, for the prevention of metastatic disease progression.


Assuntos
Antituberculosos/uso terapêutico , Diarilquinolinas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/farmacologia , Embrião de Galinha , Diarilquinolinas/farmacologia , Feminino , Humanos , Metástase Neoplásica
13.
Sci Rep ; 11(1): 2755, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531603

RESUMO

Recent evidence suggests that a loss of expression of caveolin in the stromal compartment (sCav-1) of human invasive breast carcinoma (IBC) may be a predictor of disease recurrence, metastasis and poor outcome. At present, there is little knowledge regarding the expression of sCav-1 at the metastatic sites. We therefore studied sCav-1 expression in IBCs and in their axillary lymph nodes to seek a correlation with cancer metastasis. 189 consecutive invasive IBCs (53 with axillary lymph node metastases and 136 without) were studied by immunohistochemistry, using a rabbit polyclonal anti-Cav-1 antibody. In IBCs sCav-1 was evaluated in fibroblasts scattered in the tumor stroma whereas in lymph nodes sCav-1 was assessed in fibroblast-like stromal cells. For the first time, we observed a statistically significant progressive loss of sCav-1 from normal/reactive axillary lymph nodes of tumors limited to the breast to metastatic axillary lymph nodes, through normal/reactive axillary lymph nodes of tumors with axillary metastatic spread. These data indicate that Cav-1 expressed by the stromal compartment of lymph nodes, somehow, may possibly contribute to metastatic spread in IBC.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Caveolina 1/metabolismo , Metástase Linfática/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Axila , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Linfonodos/citologia , Linfonodos/patologia , Pessoa de Meia-Idade , Células Estromais/patologia
14.
Cytokine Growth Factor Rev ; 59: 1-8, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610464

RESUMO

During the Tenth Edition of the Annual Congress on "Anticancer Innovative Therapy" [Milan, 23/24 January 2020], experts in the fields of immuno-oncology, epigenetics, tumor cell signaling, and cancer metabolism shared their latest knowledge on the roles of i] epigenetics, and in particular, chromatin modifiers, ii] cancer metabolism, iii] cancer stem cells [CSCs], iv] tumor cell signaling, and iv] the immune system. The novel therapeutic approaches presented included epigenetic drugs, cell cycle inhibitors combined with ICB, antibiotics and other off-label drugs, small-molecules active against CSCs, liposome-delivered miRNAs, tumor-specific CAR-T cells, and T-cell-based immunotherapy. Moreover, important evidence on possible mechanisms of resistance to these innovative therapies were also discussed, in particular with respect to resistance to ICB. Overall, this conference provided scientists and clinicians with a broad overview of future challenges and hopes to improve cancer treatment reasonably in the medium-short term.


Assuntos
Aniversários e Eventos Especiais , Terapias em Estudo , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas
15.
Front Oncol ; 10: 1776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194575

RESUMO

Elevated mitochondrial biogenesis and metabolism represent key features of breast cancer stem cells (CSCs), whose propagation is conducive to disease onset and progression. Therefore, interfering with mitochondria biology and function may be regarded as a useful approach to eradicate CSCs. Here, we used the breast cancer cell line MCF7 as a model system to interrogate how mitochondrial fission contributes to the development of mitochondrial dysfunction toward the inhibition of metabolic flux and stemness. We generated an isogenic MCF7 cell line transduced with Mitochondrial Fission Factor (MCF7-MFF), which is primarily involved in mitochondrial fission. We evaluated the biochemical, molecular and functional properties of MCF7-MFF cells, as compared to control MCF7 cells transduced with the empty vector (MCF7-Control). We observed that MFF over-expression reduces both mitochondrial mass and activity, as evaluated using the mitochondrial probes MitroTracker Red and MitoTracker Orange, respectively. The analysis of metabolic flux using the Seahorse XFe96 revealed the inhibition of OXPHOS and glycolysis in MCF7-MFF cells, suggesting that increased mitochondrial fission may impair the biochemical properties of these organelles. Notably, CSCs activity, assessed by 3D-tumorsphere assays, was reduced in MCF7-MFF cells. A similar trend was observed for the activity of ALDH, a well-established marker of stemness. We conclude that enhanced mitochondrial fission may compromise CSCs propagation, through the impairment of mitochondrial function, possibly leading to a quiescent cell phenotype. Unbiased proteomic analysis revealed that proteins involved in mitochondrial dysfunction, oxidative stress-response, fatty acid metabolism and hypoxia signaling are among the most highly up-regulated in MCF7-MFF cells. Of note, integrated analysis of top regulatory networks obtained from unbiased proteomics in MCF7-MFF cells predicts that this cell phenotype activates signaling systems and effectors involved in the inhibition of cell survival and adhesion, together with the activation of specific breast cancer cell death programs. Overall, our study shows that unbalanced and abnormal activation of mitochondrial fission may drive the impairment of mitochondrial metabolic function, leading to inhibition of CSC propagation, and the activation of quiescence programs. Exploiting the potential of mitochondria to control pivotal events in tumor biology may, therefore, represent a useful tool to prevent disease progression.

16.
Front Oncol ; 10: 1528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042796

RESUMO

Here, we describe the chemical synthesis and biological activity of a new Doxycycline derivative, designed specifically to more effectively target cancer stem cells (CSCs). In this analog, a myristic acid (14 carbon) moiety is covalently attached to the free amino group of 9-amino-Doxycycline. First, we determined the IC50 of Doxy-Myr using the 3D-mammosphere assay, to assess its ability to inhibit the anchorage-independent growth of breast CSCs, using MCF7 cells as a model system. Our results indicate that Doxy-Myr is >5-fold more potent than Doxycycline, as it appears to be better retained in cells, within a peri-nuclear membranous compartment. Moreover, Doxy-Myr did not affect the viability of the total MCF7 cancer cell population or normal fibroblasts grown as 2D-monolayers, showing remarkable selectivity for CSCs. Using both gram-negative and gram-positive bacterial strains, we also demonstrated that Doxy-Myr did not show antibiotic activity, against Escherichia coli and Staphylococcus aureus. Interestingly, other complementary Doxycycline amide derivatives, with longer (16 carbon; palmitic acid) or shorter (12 carbon; lauric acid) fatty acid chain lengths, were both less potent than Doxy-Myr for the targeting of CSCs. Finally, using MDA-MB-231 cells, we also demonstrate that Doxy-Myr has no appreciable effect on tumor growth, but potently inhibits tumor cell metastasis in vivo, with little or no toxicity. In summary, by using 9-amino-Doxycycline as a scaffold, here we have designed new chemical entities for their further development as anti-cancer agents. These compounds selectively target CSCs, e.g., Doxy-Myr, while effectively minimizing the risk of driving antibiotic resistance. Taken together, our current studies provide proof-of-principle, that existing FDA-approved drugs can be further modified and optimized, to successfully target the anchorage-independent growth of CSCs and to prevent the process of spontaneous tumor cell metastasis.

17.
Aging (Albany NY) ; 12(19): 18797-18803, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33049711

RESUMO

Three recent papers published in Nature, Science and Cell, all present clear evidence that there is cross-reactive T-cell immunity between human coronaviruses (229E, NL63, OC43, and HKU1), linked with the common cold, and SARS-CoV-2, the causative agent of COVID-19. Can we use this information to design and build a new vaccine based on the less pathogenic, common cold coronaviruses, for the prevention of COVID-19? If we look at the history of medicine and vaccine development, from the point of view of Edward Jenner, the answer just might be yes.

18.
Oncogenesis ; 9(9): 83, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948740

RESUMO

The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1-S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1-S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17ß-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.

19.
Cells ; 9(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751976

RESUMO

Breast cancer is the second greatest cause of cancer-related death in women. Resistance to endocrine treatments or chemotherapy is a limiting drawback. In this context, this work aims to evaluate the effects of cholesterol and mevalonate during tumor progression and their contribution in the onset of resistance to clinical treatments in use today. In this study, we demonstrated that cholesterol and mevalonate treatments were able to activate the estrogen-related receptor alpha (ERRα) pathway, increasing the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ERbB2/human epithelial receptor (HER2), tumor protein D52 (TPD52), and NOTCH2 proteins in breast cancer cells. The activation of this pathway is shown to be responsible for intense metabolic switching, higher proliferation rates, sustained motility, the propagation of cancer stem-like cells (CSCs), and lipid droplet formation. All of these events are related to greater tumor propagation, aggressiveness, and drug resistance. Furthermore, the activation and expression of proteins induced by the treatment with cholesterol or mevalonate are consistent with those obtained from the MCF-7/TAMr cell line, which is largely used as a breast cancer model of acquired endocrine therapy resistance. Altogether, our data indicate that cholesterol and mevalonate are two metabolites implicated in breast cancer progression, aggressiveness, and drug resistance, through the activation of the ERRα pathway. Our findings enable us to identify the ERRα receptor as a poor prognostic marker in patients with breast carcinoma, suggesting the correlation between cholesterol/mevalonate and ERRα as a new possible target in breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Colesterol/farmacologia , Progressão da Doença , Resistência a Medicamentos/efeitos dos fármacos , Ácido Mevalônico/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Colesterol/metabolismo , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Mevalônico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Prognóstico
20.
Aging (Albany NY) ; 12(14): 15104-15120, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32633727

RESUMO

Ductal carcinoma in situ (DCIS) is one of the earliest stages of breast cancer (BCa). The mechanisms by which DCIS lesions progress to an invasive state while others remain indolent are yet to be fully characterized and both diagnosis and treatment of this pre-invasive disease could benefit from better understanding the pathways involved. While a decreased expression of Caveolin-1 (Cav-1) in the tumor microenvironment of patients with DCIS breast cancer was linked to progression to invasive breast cancer (IBC), the downstream effector(s) contributing to this process remain elusive. The current report shows elevated expression of Signal Transducer and Activator of Transcription 5a (STAT5a) within the DCIS-like lesions in Cav-1 KO mice following estrogen treatment and inhibition of STAT5a expression prevented the formation of these mammary lesions. In addition, STAT5a overexpression in a human DCIS cell line (MCF10DCIS.com) promoted their invasion, a process accelerated by estrogen treatment and associated with increased levels of the matrix metalloproteinase-9 (MMP-9) precursor. In sum, our results demonstrate a novel regulatory axis (Cav-1♦STAT5a♦MMP-9) in DCIS that is fully activated by the presence of estrogen. Our sudies suggest to further study phosphorylated STAT5a (Y694) as a potential biomarker to guide and predict outcome of DCIS patient population.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Caveolina 1/metabolismo , Estrogênios , Invasividade Neoplásica , Fator de Transcrição STAT5/metabolismo , Animais , Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Progressão da Doença , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Fosforilação , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...